2008

US7431793

An activator composition for accelerating hardening and achieving cure-through-volume of cyanoacrylate adhesives) comprising; (a) one or more compounds selected from the group consisting of :(i) pyrazine; or a pyrazine derivative; said pyrazine derivative being pyrazine substituted with at least one electron-releasing group; (ii) pyridine N oxides substituted with at least one electron-releasing group; or (iii) 2,6 pyridines being pyridines substituted in the 2- and 6-positions by substituents, at least one of the substituents being electron-releasing provided that both substituents are not

WO2008030903

A cyanoacrylate-based adhesive composition is disclosed. The cyanoacrylate-based adhesive composition includes a cyanoacrylate monomer, and a bleachable dye including a Michler's hydrol cation or derivatized Michler's hydrol cation, paired with a non-nucleophilic anion that provides a stable color to the cyanoacrylate-based adhesive.

Cyanoacrylates are solvent free adhesives that cure rapidly when pressed into a thin film between two surfaces. Their ease availability and use in various formulations made them attractive to manufacturers a wide variety of medical devices. Unfortunately, earlier generations of cyanoacrylates had several limitations, such as poor thermal resistance and peel strength. Subsequent developments in cyanoacrylate technology have greatly expanded the performance of these adhesives.

Abstract BACKGROUND: The powder reaction moulding process uses a reactive monomer as carrier and binder for the moulding of metal or ceramic powders. De-binding is achieved using thermal depolymerisation which is followed by sintering to give the finished component. Binder can be recovered for re-use. RESULTS: Moulding compounds, with various powder volume fractions, have been prepared using stainless steel, silicon nitride and alumina with n-butyl cyanoacrylate as binder, and the stability of the compounds established.

It is accepted that terpenes are effective penetration enhancers to promote the passage of drugs or chemicals through the human skin barrier. However the physical and chemical changes of a pharmaceutical vehicle induced by the incorporation of terpenes have not been explored. Thus, this study examines the effects of three terpenes (linalool, cineole, limonene) on the rheology and chemical stability of an organogel composed of dibutyllauroylglutamide (GP1) and propylene glycol (PG).

A super-gelator for cyclohexane is presented, one of four cholesterol-appended ferrocene derivatives specifically designed and prepared as new low-molecular-weight organogelators. The gel forming from this system can be molded into films, forms at room temperature, and is responsive to various stimuli (see figure), including heating, shaking, sonication, and chemical oxidation, which endows it with promising potential applications.

Polymers are a widespread class of materials that provide an often advantageous combination of properties. Easy processability and high versatility combined with low costs make polymers the materials for an increasing number of high-tech and commodity applications. Semi-crystalline polyolefins are an important class of polymers, produced in more than 150 million metric tons per year. They are used to make a wide range of products ranging from fibers with superior mechanical properties to flexible packaging and molded parts.

In recent years, carbon dioxide (CO2) has proven to be an environmentally friendly foaming agent for the production of polymeric foams. Until now, extrusion is used to scale-up the CO2-based foaming process. Once the production of large foamed blocks is also possible using the CO2-based foaming process, it has the potential to completely replace the currently used foam production process, thus making the world-wide foam production more sustainable.

The basicity of several basic ionic liquids is studied quantitatively for the first time, and the basicity of the ionic liquids can be switched repeatedly by bubbling CO2 and N2 through the solution alternately.

The initial phase (solid or aqueous droplet) of aerosol particles prior to activation is among the critical factors in determining their cloud condensation nuclei (CCN) activity. Single-particle levitation in an electrodynamic balance (EDB) was used to measure the phase transitions and hygroscopic properties of aerosol particles of 11 organic compounds with different solubilities (10−1 to 102 g solute/100 g water). We use these data and other literature data to relate the CCN activity and hygroscopicity of organic compounds with different solubilities.

Pages