Applications

 

 

This research defined and evaluated mechanical properties of prototypes created using a plaster based three-dimensional printing (3DP) system commercialized by Z Corporation. 3DP is one of the fastest growing forms of rapid prototyping. Till date, there is little or no information available on material properties of infiltrants used in 3DP. This research work evaluated and documented some of the useful information for 3DP users by determining the effect of build position, build orientation and infiltration materials on the strength of prototypes.

US20050215744

The present invention relates to combinations of a building material and a bath fluid for methods for directly printing visual-aid models or elements, in particular, for the use in the office or at home. Furthermore, the present invention relates to the polymers obtained by the reaction of the building material and the bath fluid and to elements or models produced from the combinations according to the present invention. The use of the combinations according to the present invention in rapid prototyping methods enables the production of elements having varying mechanical properties.

US4324281

This invention is directed to a method, a rubber skim stock and a product containing the skim stock having improved adhesion between a metal member and contiguous rubber skim stock. The invention lies in the discovery that improved rubber-to-metal adhesion can be obtained by adding to an otherwise conventional rubber skim stock composition appropriate amounts of a tetracarboxylic dianhydride.

US4240852

A method wherein uncured urethane formulations are bonded to a cured rubber or synthetic rubber substrate in such a manner so as to provide greater bonding strenght than has been achieved previously in urethane formulation bonding to rubber or synthetic rubber.

A quasi-solid-state dye-sensitized solar cells (DSSCs) employing a commercial glue (“SuperGlue®”) as electrolyte matrix was fabricated. The cyano groups of the cyanoacrylate can form a supramolecular complex with tetrapropylammonium cations. This immobilizes the cations and therefore might lead to a favored anionic charge transport necessary for a good performance of the iodide/triiodide electrolytic conductor. Obtaining energy conversion efficiencies of more than 4% under 100 mW/cm2 of simulated A.M.

Pages