Utility of cyanoacetic acid hydrazide in heterocyclic synthesis
Utility of cyanoacetic acid hydrazide in heterocyclic synthesis
Folder:
Journal:
Year:
Article keywords:
Abstract:
This review describes the synthesis and reactions of cyanoacetic acid hydrazide as building block for the synthesis of polyfunctionalized heterocyclic compounds with pharmacological interest.
Type of document:
Language:
General Papers
ARKIVOC 2006 (ix) 113-156
Utility of cyanoacetic acid hydrazide in heterocyclic synthesis
Samir Bondock,*Abd El-Gaber Tarhoni, and Ahmed A. Fadda
Department of Chemistry, Faculty of Science, Mansoura University, ET-35516 Mansoura, Egypt
E-mail: Bondock@mans.edu.eg
Abstract
This review describes the synthesis and reactions of cyanoacetic acid hydrazide as building block
for the synthesis of polyfunctionalized heterocyclic compounds with pharmacological interest.
Keywords: Cyanoacetic acid hydrazide, pyrazoles, thiadiazoles, pyridines, pyrans, pyridazines,
pyrimidines, annelated heterocycles
Contents
1. Introduction
2. Synthesis of Cyanoacetic Acid Hydrazide
3. Chemical Reactivity
4. Reactions of Cyanoacetic Acid Hydrazide
4.1. Synthesis of five-membered rings with one heteroatom
4.1.1. Thiophenes and their fused derivatives
4.2. Synthesis of five-membered rings with two heteroatoms
4.2.1. Pyrazoles and their fused derivatives
4.2.2. Thiazoles and their fused derivatives
4.3. Synthesis of five-membered rings with three heteroatoms
4.3.1. Triazoles and their fused derivatives
4.3.2. Thiadiazoles
4.4. Synthesis of six-membered rings with one heteroatom
4.4.1 Pyridines and their fused derivatives
4.4.2. Pyrans and their fused derivatives
4.4.3. Thiopyrans
4.5. Synthesis of six-membered rings with two heteroatoms
4.5.1 Pyridazines and their fused derivatives
4.5.2 Pyrimidines and their fused derivatives
4.6. Synthesis of six-membered rings with three heteroatoms
ISSN 1424-6376
Page 113
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
4.6.1. Thiadiazines
4.6.2. Triazine
5. Conclusions
6. References
1. Introduction
Cyanoacetic acid hydrazide is a versatile and convenient intermediate for the synthesis of wide
variety of heterocyclic compounds. The β-functional nitrile1-4 moiety of the molecule is a
favorable unit for addition followed by cyclization or via cycloaddition with numerous reagents
providing heterocyclic compounds of different ring sizes with one or several heteroatoms that are
interesting as pharmaceuticals,5,6 as herbicides,7 as antibacterial agents,8 and as dyes.9,10 Their
reactions with dinucleophiles usually result in the formation of polycyclic ring systems which
may be the skeleton of important heterocylic compounds. In previous publications, novel
synthesis of azoles,11,12 azines,13 and azoloazines,14 had been reported utilizing β-functional
nitriles as starting components. Among the β-functional nitriles, cyanoacetic acid hydrazide and
their analogues are especially important starting materials or intermediates for the synthesis of
various nitrogen-containing heterocyclic compounds. Our research deals with the effective use of
cyanoacetic acid hydrazide in the synthesis of a variety of polyfunctional heterocyclic
compounds with biological interest.
2. Synthesis of Cyanoacetic Acid Hydrazide
Cyanoacetic acid hydrazide was obtained by careful addition of hydrazine hydrate to ethyl
cyanoacetate in ethanol with stirring at 0°C.15
Scheme 1
ISSN 1424-6376
Page 114
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
3. Chemical Reactivity
Cyanoacetic acid hydrazide can act as an ambident nucleophile, that is, as both an N- and a Cnucleophile. On treatment of cyanoacetic acid hydrazide with various reagents, the attack can
take place at five possible sites: the nucleophile is able to attack the carbon of the carbonyl
function (position 3) and the carbon atom of the nitrile function (position 5). While the active
methylene group (position 4) and amino groups (positions 1 and 2) are able to attack
electrophiles.
(4)
N
(5)
H
(3) N (1)
(2) NH2
O
4. Reactions of Cyanoacetic Acid Hydrazide
The reactions of cyanoacetic acid hydrazide with numerous reagents are classified separately in
one category due to the huge number of references. We have arranged this huge volume of data
in terms of the type of the heterocycles formed, starting with five and six membered rings in
order of increasing number of heteroatoms. Such systematic treatment provides a clear idea
about the synthetic possibilities of the method and may be useful in selecting the direction of
further research.
4.1. Synthesis of five-membered rings with one heteroatom
4.1.1. Thiophenes and their fused derivatives
Reaction of compound 2 with cyclic ketones and sulfur in the presence of morpholine under
Gewald reaction conditions afforded thiophene derivatives 3 and 4.16
ISSN 1424-6376
Page 115
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
O
O
NHNH2
+
(CH2)n
+
S
CN
2
EtOH
morpholine
n = 1, 2, 3
O
O
N
n(H2C)
S
O
(CH2)n
NH2
N
H
n(H2C)
NH2
S
N
H
(CH2)n
4
NH2
3
Scheme 2
4.2. Synthesis of five-membered rings with two heteroatoms
4.2.1. Pyrazoles and their fused derivatives
Treatment of 2 in water containing a catalytic amount of conc. HCl with acetyl acetone at room
temperature afforded 1-cyanoacetyl-3, 5-dimethyl pyrazole 5.15
O
O
O
N
H
CN
NH2
+
O
Me
H2O/HCl
r.t
N
N
Me
CN
Me
Me
2
5
Scheme 3
The reaction of 2 with alkylisocyanate yields alkylcarbamoyl derivative 6 that cyclized into
pyrazole derivative 7 up on treatment with 2N sodium hydroxide.17
ISSN 1424-6376
Page 116
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
R N C O
NHNH2
NC
NC
O
O
H
N
N
H
O
6
2
6,7
a
b
c
NHR
NH2 O
R
H
Me
Ph
N
NHR
NaOH
N
HO
7
Scheme 4
Refluxing of 2 with phenyl isothiocyanate in basic dioxane solution afforded pyrazolinone
derivative 8. Treatment of 8 with malononitrile in DMF in the presence of piperidine gave [(3amino-5-imino-4,5-dihydro-1H-pyrazol-1-yl)(anilino)methylene]malononitrile
9,
which
underwent cyclocondensation with hydrazine hydrate to give pyrazolo[1,5-a]pyrimidine
derivative 10.18
O
O
NHNH2
CN
+
Ph
N C S
dioxane
S
N
NHPh
N
H2N
2
8
NC
H2N
DMF/piperidine
N
CN
HN
N
NHPh
O
NH2NH2
NC
CN
NHPh
N
N
N
H2N
CN
H2N
10
9
Scheme 5
5-Amino-3-hydroxypyrazole derivatives 12 were prepared from the reaction of 2 with
ketones in the presence of a basic catalyst via the cyclization of hydrazone derivatives 11.19
ISSN 1424-6376
Page 117
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
O
O
R1
+
NHNH2
base
O
R2
CN
NH
CN
2
.
N
R2
11
CHR1R2
CHMe2
CHMeEt
cyclopentyl
cyclohexyl
heterocycl
11,12
a
b
c
d
e
R1
OH
N
N
H2N
CHR1R2
12
Scheme 6
Elnagdi and coworkers have reported the reaction of 2-(1-phenylethylidene)malononitrile
with 2 furnished pyrazoline derivative 13.20
H2N
O
NC
CN
+
Me
NH
CN
HN
NH2
Ph
NH
NC
Me
Ph
13
2
Scheme 7
Pyrazolidinone derivative 14 was obtained by treatment of 2 with ethyl 2-cyano-3phenylbut-2-enoate.20
NC
Me
OEt
+
Ph
O
O
O
NH
CN
HN
NH
NC
NH2
Me
Ph
14
2
Scheme 8
Cyanoaceto-N-arylsulfonylhydrazide 15 on refluxing in ethanol containing a catalytic
amount of piperidine,21 or in presence of potassium hydroxide,22 undergo intramolecular
ISSN 1424-6376
Page 118
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
cyclization to give the 5-amino-1-arylsulfonyl-4-pyrazolin-3-one or the tautomeric 5-amino-1arylsulfonyl-3-hydroxypyrazole structure 17.
NC
NH
HN
O
O
O
EtOH/piperidine HN
heat
NH
N
H2N
NH
N
O S O
O S O
Ar
O S O
Ar
Ar
16
15
15-17
a
b
c
d
e
f
17
Ar
Ph
C6H4-4-Cl
C6H4-4-Br
C6H4-4-Me
C6H4-4-OMe
C6H4-4-NO2
OH
H2N
N
N
O S
O
Ar
Scheme 9
The reaction of 2 with isatin in ethanol containing a catalytic amount of triethylamine at
room temperature furnished the isolated intermediate (2E)-2-cyano-2-(2-oxo-1,2-dihydro-3Hindol-3-ylidene)acetohydrazide 18 which cyclized under heating to give (2E)-3-(3-amino-5-oxo1,5-dihydro-4H-pyrazol-4-ylidene)-1,3-dihydro-2H-indol-2-one 19.23
ISSN 1424-6376
Page 119
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
O
NHNH2
O
O
CN
N
H
2
EtOH/Et3N
EtOH/Et3N
boiling
H
N
O
NHNH2
N
O
NH2
EtOH/Et3N
boiling
O
CN
O
N
H
N
H
18
19
Scheme 10
Condensation of hydrazone derivative 11d with aromatic aldehyde in ethanolic triethyl
amine gave the unexpected 3-aryl-4,5,6,7-tetrahydro-1H-indazole 21.24
O
Ar
NHN
CN
O
NHN
CN
11d
20
ArCHO
EtOH/Et3N
21
a
b
c
d
Ar
Ar
Ph
p-Cl-C6H4
o-Cl-C6H4
p-anisyl
N
N
H
21
Scheme 11
Treatment of 2 with phenyl 7-fluoro-4-chromone-3-sulfonate in presence of sodium acetate
and glacial acetic acid at 100°C afforded a mixture of 7-fluoro-2H-[1,2]benzoxathiino[4,3c]pyrazole
4,4-dioxide
22
and
1-amino-8-fluoro-2-oxo-1,2,3,10b-tetrahydro[1,2]
benzoxathiino[4,3-b]pyridine-3-carbonitrile 5,5-dioxide 23.25
ISSN 1424-6376
Page 120
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
O
O
SO2OPh
NHNH2
+
CN
F
2
O
AcONa
AcOH
O
N
O
F
NH
H2N
SO2
F
O
22
CN
N
SO2
23
Scheme 12
Reaction of 2 with ethyl benzoylacetate at 140-150°C yield 1N-cyanoacetyl-2Nbenzoylacetylhydrazine 24 which underwent cyclocondensation with 3-hydrazino-5,6-diphenyl1,2,4-triazine in absolute ethanol to yield compound 25 that when treated with dil. hydrochloric
acid gives 1-[1-(5,6-diphenyl-1,2,4-triazin-3-yl)-4-phenyl-1H-pyrazol-3-yl]pyrazolidine-3,5dione 26.26
O
Ph
NHNH2
NC
O
OEt
H
N
NC
O
O
O
N
H
Ph
Ph
N
Ph
N
N
N
dil.HCl
N
Ph
O
N
Ph
N
NH
N
Ph
N
Ph
24
2
Ph
O
N
N
NHNH2
N
N
N
Ph
N
H
NH
O
O
25
26
CN
Scheme 13
ISSN 1424-6376
Page 121
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
Cycloaddition of 2 with arylidene of 2-cyanomethyl-1,3-benzothiazole yielded 3-aryl-2(1,3-benzothiazol-2-yl)-3-(5-imino-3-oxopyrazolidin-1-yl)propanenitrile 27.27
N
N
H2N
CN
S
+
NH
O
NC
CN
S
Ar
Ar
HN
Ar
Ph
2-thienyl
2-furyl
27
a
b
c
2
Scheme 14
N
NH
O
27
Scheme 14
Compound 2 reacts with hydrazone derivatives in refluxing dioxane containing a catalytic
amount of triethylamine to yield pyrazoloazine derivatives 30.28
O
R
NH2
R
N
H
CO2Et
N
+
HN
O dioxane/Et3N
N
H
N
X
_
CN
X
NH
EtOH
HN
O
NC
2
28
a, X = CN
b, X = COCH3
CONH2
R=
S
R
N
N
X
OH
N
H2N
N
R
N
N
X
NC
OH
30
OH
N
N
O
29
a, X = N
b, X = CH
a, X = NH2
b, X = CH3
Scheme 15
ISSN 1424-6376
Page 122
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
4.2.2. Thiazoles and their fused derivatives
Reaction of 2 with carbon disulfide in DMF and potassium hydroxide had been reported to
afford nonisolable intermediate 31 that transformed into thiazole derivative 32 by the action of
phenacyl bromide. On the other hand treatment of compound 32 with salicylaldehyde gave the
2H-chromen-2-one derivative 34 via the nonisolable arylidene 33 followed by intramolecular
addition of hydroxy group to the nitrile function.29
NHNH2
NC
O
CS2 / KOH
DMF
H
N
NC
O
2
O
S
N
H
SK Ph
Br
H
N
NC
S
N
S
O
31
Ph
32
CHO
OH
O
O
H
N
OH
S
N
S
O
34
CN
H
N
S
N
S
O
Ph
Ph
33
Scheme 16
Condensation of 2 with 3,5_dimethyl_1_phenyl_1H_pyrazole_4_carbaldehyde in ethanol
under reflux afforded N_(3,5_dimethyl_1_phenyl_1H_pyrazole_4_methylidene) cyanoacetic acid
hydrazide 35. The conversion of 35 into thiazole derivatives 36 was achieved by Gewald
reaction, by reacting 35 with sulfur and appropriate aryl isothiocyanate in the presence of
mixture of dimethylformamide and ethanol containing triethylamine as a basic catalyst.30
ISSN 1424-6376
Page 123
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
H3C
CHO
N
+
CH3
N
H2N
CN
H
N
H3C
N
EtOH
N
N
O
Ph
O
CH3
Ph
2
CN
H
N
35
DMF/EtOH
S, ArNCS
Et3N
H2N
36
Ar
a
b
c
C6H5
4-Cl-C6H4
4-CH3-C6H4
H3C
N
N
N
H
N
Ar
N
S
O
O
CH3
Ph
36
Scheme 17
4.3. Synthesis of five-membered rings with three heteroatoms
4.3.1. Triazoles and their fused derivatives
Cyclocondensation of 1-cyanoacetyl-4-phenylthiosemicarbazide 37 under basic conditions
afforded 1, 2, 4-triazole derivative 38.31
H
N
NC
O
S
N
H
N
H
Ph
Ph
OHheat
37
NC
N
S
N NH
38
Scheme 18
Scheme 18
By treating compound 2 with tert-butoxycarbonylhydrazone esters in an oil bath at 115°C,
1,2,4-triazole derivative 42 was obtained.32
ISSN 1424-6376
Page 124
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
O
H
N N CO
O
NHNH2
t-Bu
t
R
+
O
H
N N CO
115°C
R
H
HN N
OEt
CN
t-Bu
CN
O
39
2
O
t-Bu
NH2
N
R
O
H
HN N CO
NH
N
H2O R
heat
CN
N
N
O
N
42
CN
R
H
N N
N
41
t-Bu
CN
O
40
Scheme 19
The reaction of 1-cyanoacetyl-4-phenylthiosemicarbazide 37 with ethyl iodide in DMF and
in the presence of anhydrous potassium carbonate at room temperature gave 3-ethylsulfanyl-5cyanomethyl-4-phenyl-1,2,4-triazole 43.33
H
N
NC
O
S
Ph
Me
N
H
NHPh
I
K2CO3 / DMF
N
NC
S
Me
N N
43
37
Scheme 20
The reaction of 2 with different hydrazones delivered 1,2,4-triazole derivatives 44.34
NHCO2Et
N
O
NC
HN NH2
+
NHCO2Et
R
N
NC
R
N N
OEt
44
a
b
c
d
2
R
Me
Et
Pr
Bz
44
Scheme 21
ISSN 1424-6376
Page 125
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
Golovko and coworkers published the reaction of 2 with lactim ether furnished the 5,6dihydro-4H-[1,2,4]triazolo[4,3-a][1]benzazepin-1-ylacetonitrile 45.35
H
N
NC
N
NH2
N
NC
OEt
base
+
N
N
O
2
45
Scheme 22
Treatment of 2 with 7-chloro-5-phenyl-1,3-dihydro-2H-1,4 benzodiazepine-2-thione in the
presence of a basic catalyst
afforded 8-chloro-6-phenyl-4H-s- triazolo [4,3-a] [1,4]
36
benzodiazepine-1-acetonitrile 46.
S
H
N
H
N
NC
+ Cl
NH2
N
N
base
N
O
N
NC
N
Cl
ph
Ph
46
2
Scheme 23
Refluxing of compound 25 in glacial acetic acid and anhydrous sodium acetate yielded [5(5,6-diphenyl-1,2,4-triazin-3-yl)-6-phenyl-5H-pyrazolo[5,1-c][1,2,4]triazol-3-yl]acetonitrile
47.26
Ph
N
Ph
N
Ph
N
N
Ph
25
AcONa
AcOH
N
NH
N
H
N
Ph
N
N
N
N
Ph
O
CN
N
N
47
CN
Scheme 24
ISSN 1424-6376
Page 126
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
4.3.2. Thiadiazoles
The reaction of 2 with phenylisothiocyanate in DMF in presence of sodium hydride gave nonisolable intermediate 48 that was converted into 1-cyanoacetyl-4-phenylthiosemicarbazide 37 by
treatment with conc. hydrochloric acid. Heating of 37 with phosphorous oxychloride yielded (5anilino-1,3,4-thiadiazol-2-yl)acetonitrile 49.31,33
O
O
NHNH2
+
Ph
DMF
NaOH
N C S
CN
CN
N
N
H
2
SNa
NHPh
48
conc.HCl
NC
S
H
N
O
POCl3
Ph
N N
CN
H
N
N
H
S
NHPh
37
49
Scheme 25
Condensation of acylisothiocyanate with 2 in refluxing acetone gave 45% of
thiocarbamoyl derivative 50 which underwent intramolecular cyclization in refluxing acetic acid
to give 55% N-[5-(cyanomethyl)-1,3,4-thiadiazol-2-yl]acetamide 51.37
O
NC
HN
2
NH2
AcNCS
acetone
O
NC
HN
N
H
S
acetic acid
N
H
Ac
50
NC
S
H
N
Ac
N N
51
Scheme 26
4.4. Synthesis of six-membered ring with one heteroatom
4.4.1. Pyridines and their fused derivatives
Cyclocondensation of 2 with ethyl 3-aminocrotonate in methanol in the presence of potassium
hydroxide under reflux afforded 1-amino-3-cyano-6-hydroxy-4-methyl-pyridine-2-one 52.38
ISSN 1424-6376
Page 127
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
Me
Me
NC
+
O
NC
H2N
NH
MeOH
KOH
EtO
O
O
N
OH
NH2
NH2
2
52
Scheme 27
Cyclocondensation of 2 with benzoylacetone and/or benzoyl trifluoroacetone in refluxing
ethanol containing a catalytic amount of diethyl amine yielded regioselectively 1-amino-4-alkyl2-oxo-6-phenyl-1,2-dihydropyridine-3-carbonitrile 53.39-40
O
NC
R
+
O
R
NH
NC
EtOH
Ph
O
NH2
Et2NH
O
N
53 R
a CH3
b CF3
2
Ph
NH2
53
Scheme 28
Refluxing of 2 with benzylidenemalononitrile in ethanol in presence of piperidine gave
pyridone derivative 54.41
NH2
NC
NC
CN
+
O
NH
EtOH/piperidine
Ph
NC
O
CN
N
Ph
NH2
NH2
2
54
Scheme 29
Scheme 29
On heating 2 and arylidene of ethyl cyanoacetate in ethanol containing triethyl amine
under reflux afforded diaminopyridine derivative 58 rather than aminopyridine derivative 56.42,43
ISSN 1424-6376
Page 128
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
Ar
NC
CO2Et
+
O
CN
NH
2
NH2
EtOH
Et3N
Ar
Ar
NC
O
NC
CO2Et
N
O
NH2
-H2
Ar
Ar
CO2Et
N
OH
55
-H2
O
N
NH2
NH2
57
NC
CN
NH2
55-58
a
b
c
Ar
Ph
4-Cl-C6H4
furyl
NC
O
CN
N
NH2
NH2
58
OH
56
Scheme 30
The one-pot reaction of 2 with aldehyde and an activated nitrile in ethanol containing a
catalytic amount of piperidine yielded pyridine-2-one derivative 60.44-46
ISSN 1424-6376
Page 129
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
R
NC
X
O
NH
+
NH2
R
CHO
NC
EtOH/piperidine
+
NC
O
R = H, Me, p-NO2C6H4, p-MeOC6H4
X = CN, COPh,CO2Ph
2
NH
CN
NH2
R
59
NC
O
X
X
N
NH2
NH2
60
Scheme 31
Compound 2 reacted with (2E)-2-cyano-N-(4-methylphenyl)-3-phenylacrylamide in dry
ethanol containing catalytic amount of piperidine under reflux to afford pyridine derivative 63
instead of compound 62.47
NHAr
NHAr
NC
+
O
NH
NH2
2
Ph
O
EtOH/piperidine
NC
CN
O
Ph
NH
CN
NH2
61
Ar = 4-MeC6H4
NHAr
NHAr
NC
O
Ph
N
NH2
63
NH
NC
O
CN
N
Ph
NH2
62
Scheme 32
Cyclocondensation of 2 with (4-methoxybenzylidene)malononitrile in ethanol in the
presence of triethylamine afforded 1-aminopyridine derivative 64, which rearranged on heating
ISSN 1424-6376
Page 130
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
in 95% aqueous ethanol/triethylamine to give 1,4-diamino-5-cyano-2-(4-methoxyphenyl)-6-oxo1,6-dihydropyridine-3-carboxylic acid 65.48
NH2
NC
NC
O
NH
NH2
+
NC
EtOH/Et3N
CN
OMe
O
N
NH
NH2
2
OMe
64
NH2
NC
O
CO2H
N
NH2
EtOH(95%)/Et3N
OMe
65
Scheme 33
Scheme 33
Martin and coworkers reinvestigated the cyclocondensation of 2 with (4methoxybenzylidene)malononitrile. They have found that prolonged heating lead only to the
formation of 1,6-diamino-4-(4-methoxyphenyl)-3,5-dicyano-2-pyridone 66. The structure of
compound 66 had been confirmed on the basis of chemical and spectroscopic evidence.49
OMe
OMe
NC
+
O
NH
NH2
CN
EtOH/Et3N
NC
CN
24h,
CN
O
2
N
NH2
NH2
66
Scheme 34
Treatment of 2 with arylidene cyanothioacetamide in ethanol containing catalytic amount
of piperidine yielded pyridine-thione derivatives 69.46
ISSN 1424-6376
Page 131
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
R
S
R
O
NC
base
EtOH
NHNH2
+
CN
NH2
S
NHNH2
N
2
NC
N
H
-H2
R
O
O
NC
NHNH2
S
NH2
67
67-69 R
a
H
b
Me
R
O
NC
NH2
S
NHNH2
N
NH2
68
69
Scheme 35
Reaction of cyanoaceto-N-arylsulfonylhydrazide 15a with 2-((thiophen-2-yl)methylene)
malononitrile in ethanol containing a catalytic amount of piperidine furnished pyridin-2-one
derivative 70.50
S
S
NC
CN
O
+
NH
HN
EtOH/piperidine
NC
O
NC
SO2Ph
15a
CN
N
HN
NH2
SO2Ph
70
Scheme 36
Refluxing of cyanoaceto-N-arylsulfonylhydrazide 15 with arylidenecyanoacetate in
presence of pyridine51,52 afforded pyridone derivative 73, while in the presence of ethanol
containing a catalytic amount of piperidine51 afforded pyridine-2-one derivative 75.52
ISSN 1424-6376
Page 132
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
Ar
Ar
CN
NC
OEt
NC
O
CN
+
O
O
NH
HN
NH O
HN
SO2Ph
15
OEt
SO2Ph
71
pyridine
EtOH/piperidine
Ar
Ar
NC
O
N
HN
74
CN
NC
CO2Et
O
NH2
HN
SO2Ph
-H2
Ar
Ar
72-75
a
b
c
d
e
CO2Et
NC
N
HN
SO2Ph
72
-H2
O
OH
N
NH2
Ar
Ph
4-ClC6H4
4-MeC6H4
4-MeOC6H4
4-NO2C6H4
CN
NC
O
HN
SO2Ph
OH
N
75
SO2Ph
73
Scheme 37
Substituted N-benzoylaminopyridone 76 was prepared by cyclocondensation of Nbenzoylcyanoacetohydrazide 6c with ethyl acetoacetate in presence of sodium methoxide.52
Me
NC
+
O
NH
Me
NC
O
NaOCH3
O
OEt
NHCOPh
O
N
OH
NHCOPh
6c
76
Scheme 38
ISSN 1424-6376
Page 133
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
Cyclocondensation
of
3-indolylidenecyanoacetohydrazide
77
with
ethyl
benzylidenecyanoacetate in the presence of a base gave the corresponding 4-phenyl-3,5-dicyano6-hydroxyl-1N-(3-indolylidene) pyridin-2-ones 78.53
Ph
NC
NC
Ph
NH
O
N
CN
CN
+
EtO
O
base
N
OH
N
O
N
H
N
H
77
78
Scheme 39
On heating 2 with phenylhydrazono-3-oxobutyronitrile in refluxing ethanol containing a
catalytic amount of triethyl amine yielded pyridine-2,6-dione derivative 79.54,55
O
NC
+
O
Me
NNHPh
Me
CN
NH
NC
EtOH
Et3N
NNHPh
O
N
O
NH2
NH2
2
79
Scheme 40
Elzanate et al. have been reported a novel synthetic route to nitrosopyridinone derivative
80 via the reaction of oxime derivative of β-ketoester with N-benzoylcyanoacetohydrazide.56
Me
NC
+
O
NH
Me
N
O
O
OH
OEt
NHCOPh
NC
NO
NaOH
O
N
OH
NHCOPh
6c
80
Scheme 41
ISSN 1424-6376
Page 134
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
The reaction of N-cyanoacetylhydrazone of epiandrosterone 81 with malononitrile in
ethanol in the presence of a catalytic amount of piperidine afforded pyridine-2-one derivative
82.57
NH2
NC
O
Me
Me
Me
NC
Me
H
HO
CN
HN
N
CN
Me
EtOH/piperidine
H
HO
H
81
O
NH2
N
N
Me
H
H
H
82
Scheme 42
Refluxing of 2 with 2-(4,5-dihydro-4-oxothiazol-2-yl)-3-phenylacrylonitrile in ethanol
containing catalytic amount of piperidine gave 5-amino-8-cyano-3-oxo-7-phenyl-2,3-dihydro7H-[1,3]thiazolo[3,2-a]pyridine-6-carboxylic acid 83.41
CN
CN
Ph
H2NHN
CN
O
Ph
S
+
S
EtOH/piperidine HO
N
O
2
N
O
NH2
O
83
Scheme 43
Cyclocondensation of 2 with 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde
yielded
7-amino-3-methyl-6-oxo-1-phenyl-6,7-dihydro-1H-pyrazolo[3,4-b]pyridine-558
carbonitrile 84.
ISSN 1424-6376
Page 135
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
H
NC
Me
O
+
O
Cl
NH
NH2
N
Ph
NC
N
Me
O
N
NH2
N
Ph
N
84
2
Scheme 44
Condensation of cyanoacetic acid hydrazones 85 with 1-aminoanthraquinone under
Vilsmeier reaction conditions afforded 3-azabenzanthrone derivatives 86.59
O
HN
NH2
HN
+
N
NH
O
NC
Me
N
Me
Ar
N
POCl3
DMF
Ar
NC
O
Ar
86
a ferrocenyl
b 2-thienyl
85
86
Scheme 45
Cyclocondensation of 2 with (2E)-2-(1H-benzimidazol-2-yl)-3-arylacrylonitrile under
reflux in the presence of a base gave 1-amino-3-aryl-4-cyanopyrido[1,2-a]benzimidazole-2carbohydrazide 87.60
O
NH
N
CN
NHNH2
+
Ar
NH2 O
base
CN
NHNH2
N
Ar
N
2
87
87
a
b
c
d
CN
Ar
Ph
4-MeC6H4
4-MeOC6H4
1-naphthyl
Scheme 46
ISSN 1424-6376
Page 136
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
The reaction of 2 with α,β-unsaturated ketones in the presence of a base gave pyrazolo[3,4b]pyridine-3-one derivative 89.61
NH2
O
CN
Ar
base
+
HN
NH2
O
2
CN
O
Ar
Ar
HN
HN
O
Ar
N
N
O
Ar
89 Ar
a 2-furyl
b 2-thienyl
88
Ar
89
Scheme 47
Pyrazolopyridines 90 were obtained via cyclocondensation of β-ketoaldehyde with 2 in
alkaline medium.62
H
O
R
OH
O
base
+ NC
O
H2N
NH
N
R
90
a
b
c
2
Scheme 48
R
Me
Ph
3-pyridyl
N
H
N
90
Scheme 48
Pyrazolo[3,4-b]pyridine derivative 92 was prepared
benzoylcinnamonitrile with N-acetyl cyanoacetohydrazide 91.63
via
the
reaction
of
α-
Ph
NC
Ph
O
Ph
O
+
CN
NH
HN
Ac
91
NC
Ph
O
N
N
H
NH
92
Scheme 49
Cyclocondensation of 2 with β-aminocrotononitrile in acidic medium yielded
pyrazolo[3,4-b]pyridine derivative 93.64
ISSN 1424-6376
Page 137
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
N
NH2
CN
Me
H2N
+
NH
NC
H+
O
NH
HN
O
Me
NH2
2
93
Scheme 50
The reaction of 2 with 3-acetylcoumarin in ethanol containing a catalytic amount of
piperidine under reflux afforded 5-methyl-2,11c-dihydrochromeno[4,3-d]pyrazolo[3,4b]pyridine-1,6-dione 95.65
HN
O
Me
O
O
NH2
HN
+
N
NH2
O
O
C N EtOH/piperidine
O
Me
2
HN
O
N
O
94
O
N
Me
O
Scheme 51
-H2O
O
95
Scheme 51
Reaction of 2 with different aromatic aldehydes in ethanol under reflux afforded 1Narylmethylidene-2-cyanoacetohydrazides 96 that were treated with benzylidenemalononitrile to
give [1,2,4]triazolo[1,5-a]pyridin-5(3H)-one derivatives 97.66
ISSN 1424-6376
Page 138
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
Scheme 52
[1,2,4]Triazolo[1,5-a]pyridin-5(1H)-one derivatives 99 were prepared in one pot reaction
in excellent yields by the reaction of 2 with malononitrile and an aromatic aldehyde.67
O
NC
O
NC
N NH2 +
H
NC
CN +
O
N
Ar
H2N
H
2
N
Ar
NH2
98
99
a
b
C
Ar
Ph
4-ClC4H6
4-MeOC4H6
O
NC
N
H2N
99
N
Ar
N
H
Scheme 53
Martin and coworkers have reported that an unexpected reaction between N-acetyl
cyanoacetohydrazide 91 and α-cyanocinnamonitrile in ethanol containing catalytic amount of
piperidine afforded a novel 2-methyl-5-oxo-7-phenyl-1,5-dihydro[1,2,4]triazolo[1,5-a]pyridine6,8-dicarbonitrile 100.68
ISSN 1424-6376
Page 139
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
O
Ph
CN
NC
N
H
+
O
H
N
CN
EtOH/piperidine
O
NC
N N
Ph
Me
N
H
CN
100
91
Me
Scheme 54
Refluxing of hydrazone derivative 11d and appropriate arylidenes of activated nitriles in
ethanolic piperidine yielded spiro[cyclohexane-1,2`-[1,2,4]triazolo[1,5-a]pyridine]-5`-(1`H)-one
derivatives 102.24,69
O
NC
N
O
NC
N
H
Ar
N
11d
CN
Ar
O
X
NC
102
a
b
c
d
e
f
NH2
X
101
EtOH
piperidine
+
Ar
Ph
p-anisyl
p-Cl-C6H4
furyl
Ph
p-anisyl
X
CN
CN
CN
CN
CO2Et
CSNH2
N
N
Ar
X
102
H
N
N
H
Scheme 55
On the other hand, 3-indolylidenecyanoacetohydrazide 77 condensed with different
arylidenemalononitriles in presence of a base to give 7-aryl-6,8-dicyano-2-(3indolyl)[1,2,4]triazolo[1,5-a]-pyridin-5-ones 103.53
ISSN 1424-6376
Page 140
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
O
O
N
CN
N
H
base
+
N C
N
H
N
N
Ar
CN
N
H
Ar
CN
N
CN
103
78
Scheme 56
When anthranilonitrile was fused on an oil bath at 170 °C with different N-arylidenes of
cyanoacetohydrazide 96 in presence of triethyl amine, it afforded triazolo[4,3-a]quinoline
derivatives 106. Compounds 106 are assumed to be formed by the initial Thorpe-Ziegler
addition65 of the methylene group 96 to the CN group of anthranilonitrile to afford the acyclic
intermediates 104, followed by loss of a water molecule to afford the acyclic intermediates 105,
which in turn undergo a further cyclization via addition of the NH to the activated C=N to give
the final products 106.70
Scheme 57
ISSN 1424-6376
Page 141
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
4.4.2. Pyrans and their fused derivatives
Refluxing of hydrazone derivative 11d and salicylaldehyde in ethanol containing a catalytic
amount of sodium hydroxide afforded N`-cyclohexylidene-2-imino-4-oxochromane-3carbohydrazide 107.71
O
HN
H
OH
N
O
+
HN
O
O
EtOH
NaOH
CN
N
O
11d
NH
107
Scheme 58
3-Methyl-6-oxo-4-phenyl-1,6-dihydropyran[2,3-c]pyrazole-5-carbonitrile
108
prepared via cyclocondensation of 2 with 4-benzylidene-3-methyl-2-pyrazolin-5-one.72
O
NHNH2
O
O
NH
+
N
NC
2
Ph
-NH2NH2
O
was
NH
N
NC
Ph Me
108
Me
Scheme 59
Refluxing of 2 with pyrazolinone in ethanol in the presence of piperidine gave 6-amino-3methyl-4-phenyl-1,4-dihydropyran[2,3-c]pyrazole-5-carbohydrazide 109.41
O
CN
H2NHN
N
+
O
H2N
NH
EtOH/piperidine
Ph Me
H2NHN
NH
N
O
2
O
Ph Me
109
Scheme 60
ISSN 1424-6376
Page 142
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
Cyclocondensation of 2 with benzofuranyl derivatives under Claisen-Schmidt reaction
yielded 4-aryl-6-(6-hydroxy-2,3-diphenyl-1-benzofuran-5-yl)-2-imino-3,4-dihydro-5-phenyl-2Hpyran-3-carbohydrazide 110.73
O
Ph
O
CN
H2NHN
Ph
Ar
+
Ph
2
O
OH
base
O
110 Ar
a p-MeC6H4
b p-ClC6H4
NH
Ph
O
H2NHN
Ph
Ar
Ph
OH
O
110
Scheme 61
Reaction of 2 with benzopyranone in ethanol containing a catalytic amount of triethyl
amine under reflux afforded 2-imino-5-methoxy-8-methyl-6-oxo-4-(2-oxo-2-phenylethyl)-3,4dihydro-2H,6H-pyrano[3,2-g]chromene-3-carbohydrazide 111.74
O
O
O
H2N
Ph
MeO
Et3N
EtOH
+
N
H
CN
2
Ph
O
HO
O
Me
MeO
O
H2NHNCO
HN
O
Me
O
111
Scheme 62
Reaction of bisdithiolobenzoquinone with 2 in a 1: 2 molar ratio in alkaline medium gave
dispiro[4H-pyran-4,2`-[1,3]dithiolo[4,5-f][1,3]benzodithiole-6`,4``-[4H]pyran]-3,3``dicarbonitrile derivative 112. 75
ISSN 1424-6376
Page 143
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
Me
Me
O
H
N
NC
+
NH2
O
S
NH2
O
Me
S
O
S
O
alk.med.
S
CN
O
O
O
S
2
S
O
NC
S
S
O
Me
H2N
Me
O
Me
112
Scheme 63
4.4.3. Thiopyran
The reaction of 2 with benzalcyanothioacetamide in ethanol containing a catalytic amount of
triethyl amine gave thiopyran derivative 113.76
Ph
Ph
CN
NC
+
H2N
S
O
EtOH
Et3N
NHNH2
2
NC
H2N
CN
S
O
113
Scheme 64
4.5. Synthesis of Six-Membered Ring with Two Heteroatoms
4.5.1. Pyridazines and their fused derivatives
Reaction of 2 with biacetyl in ethanol at room temperature yielded pyridazin-3-one derivative
115.77
ISSN 1424-6376
Page 144
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
O
HN
Me
NH2
O
HN
Me
Me
O
N
HN
-H2O
O
-H2O
O
N
O
Me
Me
CN
CN
2
Me
CN
115
114
Scheme 65
Refluxing of 2 with aceanthraquinone in acetic acid gave 116 that transformed into
aceanthryleno[1,2-c]pyridazine derivative 117 when treated with potassium hydroxide.78
H2N
NH
O
AcOH H2N NHO
+
O
CN
O
KOH
O
HN
O
CN
2
N
CN
117
116
Scheme 66
Cyclocondensation of α-(ethoxymethylene)-2,3,4,5-tetrafluoro-β-oxobenzenepropanoic
acid ethyl ester with 2 led to the formation of fluorinated 1,3,4-oxadiazino[6,5,4-i,j]quinolines
118.79
F
HN
2
F
F
O
NC
F
+
NH2
N
F
F
O
NC
N
O
O
CO2Et
CO2Et
118
Scheme 67
ISSN 1424-6376
Page 145
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
The reaction of 2 with 2-phenyl-1,1,3-tricyano-3-bromopropene in a basic medium gave
the nonisolable acyclic intermediate 119, which underwent cyclization via the addition of the
active methylene to the CN group to afford the pyrrolo[1,2-b]pyridazine derivative 120.80
Ph
H
N
NC
CN
Ph
NH2
+
NH
NH
NC
Br
2
CN
H2N
CN
NC
CN DMF
NC
O
TEA
Ph
CN
NH2
N
N
NC
O
OH
119
120
Scheme 68
Scheme 68
4.5.2. Pyrimidine and their fused derivatives
Barbituric acid derivative 121 could be obtained by the reaction of chlorocarbonylisocyanate
with 2.81
CN
CN
O
H2N
+
N
NH
O
O
Cl
C
O
base
H2N
N
NH
O
O
2
121
Scheme 69
Mohareb and coworkers reported that the reaction of N-benzylidene
cyanoacetohydrazide 97a with ethyl cyanoacetate afforded pyrimidine derivative 122.82
O
O
CN
of
N
H
N
Ph
+
OEt
NC
O
N
base
H2N
96a
N
Ph
CO2Et
N
122
Scheme 70
ISSN 1424-6376
Page 146
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
Cinnamoyl isothiocyanate reacts with 2 to give the corresponding cinnamoyl thiourea 123
which undergo cyclization in refluxing sodium ethoxide solution to give the corresponding 1-(5oxo-4,5-dihydro-1H-pyrazol-3-yl-)-6-phenyl-2-thioxotetrahydropyrimidin-4(1H)-one 124.83
N
C
N
S
S
+
O
H2N
NH
NH
HN
NC
N
H
O
O
Ph
O
Ph
2
123
N
S
HN
NH
N
O
NaOEt
O
Ph
124
Scheme 71
Scheme 71
Abdel Rahman et al. reported that treatment of 3-chloro-5,6-diphenyl-1,2,4-triazine with 2
in pyridine gave compound 125 which underwent dehydrocyclization by boiling in acetic acid
containing catalytic amount of anhydrous sodium acetate to give 6-methyl-8-oxo-2,3-diphenyl8H-pyrimido[1,6-b][1,2,4]triazine-9-carbonitrile 126.84
Ph
Ph
N
HN
N
N
pyridine
+
O
Cl
Ph
N
Ph
NH2
N
N
HN
NH2
O
CN
CN
2
125
Me
Ph
N
Ph
N
N
AcONa
AcOH
N
O
CN
Scheme 72
126
Scheme 72
The reaction of 2 with arylhydrazonomalononitrile in ethanol under reflux afforded
pyrazolo[1,5-a]pyrimidine derivative 130.85
ISSN 1424-6376
Page 147
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
H
N N
Ar
CN
Ar
N N
N
Ar
N N
NH2
H2N
129-130
a
b
c
d
N
N
N
127
Ph
N N
CN
O
Ar
Ph
4-ClC6H4
4-MeC6H4
4-MeOC6H4
NH2
N
N
N N
NH
129
H2N
O
2
NH2
H2N
Ar
H2N
+
CN
CN
H
N
N N
Ar
H2N
NH2
N
N
N
NH2
O
128
130
Scheme 73
4-Amino-5-arylidenehydrazinocarbonylthiazole-2(3H)-thiones 131 were prepared by the
reaction of N-arylidene cyanoacetic acid hydrazides 96 with sulphur and phenyl isothiocyanate in
the presence of triethyl amine. These compounds were cyclized by acetic anhydride to give the
corresponding thiazolo[4,5-d]pyrimidines 132.86
Ar1
N
NH
NC
O
97
H2N
S / PhNCS
Et3N / DMF
1
Ar
N
H
N
Ph
N
H3C
Ac2O
S
Ar1
S
N
N
131
131-132 Ar1
a
b
c
S
N
O
Ph
N
S
O
132
C6H5
4-Cl-C6H4
4-OCH3-C6H4
Scheme 74
ISSN 1424-6376
Page 148
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
Treatment of 2 with pentane-2,4-dione in ethanol in the presence of acetic acid led to the
formation of 5,7-dimethylpyrazolo[1,5-a]pyrimidin-2-ol 133.87
Me
Me
O
+
Me
O
H2N
NH
NC
N
EtOH/AcOH
O
Me
N
OH
N
2
133
Scheme 75
2-(2-Bromo-1-phenyl-2-thiocyanatoethylidene)malononitrile reacts with 2 to afford 4Hpyrrolo[1`,2`:4,5][1,3,4]thiadiazolo[3,2-a]pyrimidin-4-one derivative 134.88
O
O
CN
N
H
2
NH2
+
CN
Br
NC
CN
S
Ph
N
base
H2N
N
NH2
N
CN
S
134
Ph
Scheme 76
Heating of cyclopentylidene hydrazide of cyanoacetic acid 11c with salicylaldehyde in
presence of a base afforded 3H-chromeno[2,3-d]pyrimidin-4(5H)-one derivatives 137.89
Scheme 77
ISSN 1424-6376
Page 149
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
4.6. Synthesis of Six-Membered Ring with Three Heteroatoms
4.6.1. Thiadiazine
The reaction of 1-cyanoceto-4-phenylthiosemicarbazide 37 with ethyl bromoacetate in DMF and
in the presence of anhydrous potassium carbonate at room temperature gave 1,3,4-thiadiazine
derivative 138.33
NHPh
NHPh
HN
NH
NC
Br
S
+
N
K2CO3
EtO
O
O
N
NC
DMF
S
O
37
O
138
Scheme 78
4.6.2. Triazine
Nucleophilic addition reaction of 3-thiophen-2-yl-acryloylisothiocyanate with 2 afforded
thiocarbamoyl derivative 139 which gave pyrazolo[1,5-a][1,3,5]triazine derivative 140 on
treatment with 5% potassium hydroxide.90
N
S
C
O
S
S
H2N
+
HN
NH
NC
S
O
2
N
H
O NC
NH
O
139
HS
N
S
Scheme 79
N
N
5%KOH
N
OH
140
Scheme 79
5. Conclusions
The data considered in this review clearly demonstrate the high synthetic potential of
cyanoacetic acid hydrazide. Many biologically active heterocyclic compounds have been
ISSN 1424-6376
Page 150
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
obtained based on these reagents.1-10 This suggests that cyanoacetic acid hydrazide can be
particularly promising synthons in combinatorial synthesis of functionalized carbo- and
heterocyclic compounds used in the design of novel highly effective pharmaceuticals with a
broad spectrum of bioresponses. The great interest of chemists in such reagents is confirmed by
the facts that more than 80 articles of 90 cited in this review are dated in the last two decades,
along with a multitude of patents.
6. References
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Elnagdi, M. H.; Elmoghayar, M. R. H.; Elgemeie, G. E. H. Synthesis 1984, 1.
Gaber, A. M.; El-Gaby, M. S. A.; El-Dean, A. M. K.; Eyada, H. A.; Al-Kamali, A. S. N. J.
Chin. Chem. Soc. 2004, 51, 1325.
Elagamey, A. G. A.; El-Taweel, F. M.; Khodeir, M. N. M.; Elnagdi, M. H. Bull. Chem. Soc.
Jpn. 1993, 66, 464.
Hussein, A. H. M. Heteroatom Chem. 1996, 7, 2.
Elnagdi, M. H.; Erian, A. W. Arch. Pharm. 1991, 324, 853.
Gilman, A. G.; Goodman, L. S. Pharmaceutical Basis of Therapeutics. Macmillan: New
York, 1985; p 1109.
Cosales, M. J.; Kleschick, W. A.; Her, R. J.; Wiemer, M. R. US Patent 1998, 792, 587;
Chem. Abstr. 1998, 128, 67792k.
De Marinis, R. M.; Hoover, J. R. E.; Dunn, G. L.; Actor, P.; Uri, J. V.; Weisbach, J. A. J.
Antibiot. 1975, 28, 463.
Fahmy, S. M.; Badran, A. H.; Elnagdi, M. H. Chem. Tech. 1980, 30, 390.
Fahmy, S. M.; El-Hosami, M.; Elgamal; S.; Elnagdi, M. H. J. Chem. Technol. Biotechnol.
1982, 32, 1042.
Elnagdi, M. H.; Elmoghayar, M. R. H.; Hammam, A. E. G.; Khallaf, S. A. J. Heterocycl.
Chem. 1979, 16, 1541.
Elmoghayar, M. R. H.; Elnagdi, M. H.; Ibrahim, M. K. A.; Sallam, M. M. M. Helv. Chim.
Acta 1977, 60, 2171.
Elnagdi, M. H.; Elfahham, H. A.; Ghozlan, S. A. S.; Elgemeie, G. E. H. J. Chem. Soc.,
Perkin Trans. 1 1982, 2667.
Elmoghayar, M. R. H.; Elmoghayar, M. R. H.; Elghandour, A. H. H.; Elnagdi, M. H.
Synthesis 1981, 635.
Gorolets, N. Y.; Yousefi, B. H.; Belaj, F.; Kappe, C. O. Tetrahedron 2004, 60, 8633.
Gewald, V. K.; Hofmann, I. J. prakt. Chem. 1969, 311, 702.
Drummond, J. T.; Johnson, G. J. Heterocycl. Chem. 1988, 25, 1123.
Mohareb, R. M.; Sherif, S. M. Sulfur Lett. 1992, 15, 91; Chem. Abstr. 1993, 118, 80892k.
Gtyl'budagyan, A. L.; Akopyan; M. E.; Vartanyan, R. S.; Sheiranyan, M. A. Hayastani
Kimiakan Handes 2002, 55, 58; Chem. Abstr. 2003, 139, 307714.
ISSN 1424-6376
Page 151
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
20. Abdel-Galil, F. M.; Abdel-Motaleb, R. M.; Elnagdi, M. H. An. Quim., Ser. C 1988, 84, 19;
Chem. Abstr. 1989, 110, 75387.
21. Elgemeie, G. E. H.; Metwally, N. H. J. Chem. Res., Synop. 1999, 384.
22. Vosrova, L. M.; Grenad'orova, M. V.; Klad'ko, L. G. Uk. Khim. Zh. 2004, 70, 115; Chem.
Abstr. 2004, 142, 392328.
23. Mohammed, Y. S.; Regaila, H. A. A.; Gohar, A. K. M. N.; Abdel-Latif, F. F.; Ahmed, E.
Kh. Egypt. J. Pharm. Sci. 1988, 29, 419; Chem. Abstr. 1989, 110, 231374.
24. Hussein, A. H. M. Z. Nat. forsch., B. J. Chem. Sci. 1998, 53, 488; Chem. Abstr. 1998, 129,
16091.
25. Löwe, W.; Bischoff, S.; Wéber, M.; Perpetuo, G.; Luger, P. J. Heterocycl. Chem. 1995, 32,
249.
26. Abdel-Rahman, R. M. Indian J. Chem., Sect.B 1998, 27B, 548.
27. Ghoneim, K. M.; El-Basil, S.; Osman, A. N.; Said, M. M.; Megahed, S. A. Rev. Roum.
Chim. 1991, 36, 1355; Chem. Abstr. 1992, 117, 131111u.
28. Mohareb, R. M.; Sherif, S. F.; Gaber, H. M.; Ghabrial, S. S.; Aziz, S. I. Heteroatom Chem.
2004, 15, 15.
29. Mohareb, R. M.; Aziz, S. I.; Abdel-Sayed, N. I.; El-Banna, A. H. J. Chem. Res., Synop.
1999, 10.
30. Fahmy, H. T. Y.; Rostom, S. A. F.; Bekhit, A. A. Arch. Pharm. Pharm. Med. Chem. 2002, 5,
213.
31. Dobosz, M.;Pachuta-Stec, A. Acta Pol. Pharm. 1995, 52, 103; Chem. Abstr. 1995, 123,
339910.
32. Demirbas, N.; Demirbas, A.; Sancak, K. Turk. J. Chem. 2002, 26, 801.
33. Mekheimer, R. A.; Shaker, R. M. J. Chem. Res., Synop. 1999, 76.
34. Ikizler, A. A.; Ikizler, A.; Uzunismail, N. Org. Prep. Proced. Int. 1992, 24, 365.
35. Golovko, T. V.; Solov,eva, N. P.; Anisimova, O. S.; Granik, V. G. Chem. Heterocycl.
Compd. 2003, 39, 344.
36. Hester, J. B., Jr. US Patent 1977, 012, 413; Chem. Abstr. 1977, 87, 53405p.
37. Elmoghayar, M. R. H.; Ghali, E. A.; Ramiz, M. M. M.; Elnagdi, M. H. Liebigs Ann. Chem.
1985, 10, 1962.
38. Gmaj, J.; Sosnowski, C.; Zaremba, Z.; Mrowinski, B. Polish Patent 1990, 88,272649;
Chem. Abstr. 1991, 114, 64264.
39. Elgemeie, G. E. H.; El-Ezbawy, S. R.; Ramiz, M. M.; Mansour, O. A. Org. Prep. Proced.
Int. 1991, 23, 645.
40. Gutcait, A.; Belyakov, S. V.; Gudriniece, E.; Bleidelis, J.; Mishnev, A. F.; Kramina, M.
Kimijas Serija 1986, 5, 607; Chem. Abstr. 1987, 107, 58776.
41. Elmoghayar, M. R. H.; Elagamey, A. G. A.; Nasr, M. Y. S.; Sallam, M. M. M. J.
Heterocycl. Chem. 1984, 21, 1885.
42. Basyouni, W. M. Acta Chem. Slov. 2003, 50, 223; Chem. Abstr. 2003, 140, 111344.
ISSN 1424-6376
Page 152
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
43. Al-Najjar, A. A.; Amer, S. A.; Riad, M.; Elghamry, I.; Elnagdi, M. H. J. Chem. Res., Synop.
1996, 296.
44. Abdel-Latif, F. F.; Mekheimer, R.; Ahmed, E. Kh.; Abdel-Aleem, T. B. Pharmazie 1993,
48, 736.
45. Elmoghayar, M. R. H.; Elagamey, A. G. A.; Nasr, M. Y. A.; Sallam, M. M. M. J.
Heterocycl. Chem. 1984, 21, 1885.
46. Hussein, A. H. M. Heteroatom Chem. 1997, 8, 1.
47. El-Rady, E. A.; Khalil, M. A. J. Chin. Chem. Soc. 2004, 51, 779; Chem. Abstr. 2004, 142,
219224.
48. Zayed, E. M.; Hafez, E. A,; Ghozlan, S. A. S.; Ibrahim, A. A. H. Heterocycles 1984, 22,
2553.
49. Martin, N.; Seoane, C.; Soto, J. L. Heterocycles, 1985, 23, 2013.
50. Elgemeie, G. H; Sayed, S. H. Phosphorus Sulfur Silicon Rel. Elem. 2003, 178, 465.
51. Elgemeie, G. E. H.; Elghandour, A. H. H.; Ali, H. A.; Abdel-Azzez, H. M. J. Chem. Res.,
Synop. 1999, 6.
52. Beckmann, S.; Schefczik, E. Eur. Patent 1994, 628,547; Chem. Abstr. 1995, 122, 213936.
53. Mandour, A. H.; Fathalla, O. A.; Basyouni, W. M. Biomed. Prob. 2000, 60, 53; Chem.
Abstr. 2001, 135, 318456.
54. Bakeer, H. M. J. Serb. Chem. Soc. 1992, 57, 725; Chem. Abstr. 1993, 118, 147532p.
55. Bakeer, H. M. J. Indian Chem. Soc. 1992, 69, 314; Chem. Abstr. 1993, 118, 191683n.
56. Elzanate, A. M. Heterocycl. Commun. 2002, 8, 145.
57. Doss, S. H.; Louca, N. A.; Elmegeed, G. A.; Mohareb, R. M. Arch. Pharmacal Res. 1999,
22, 496; Chem. Abstr. 2000, 132, 64443y.
58. Abdel-latif, F. M. Asian J. Chem. 1993, 5, 184; Chem. Abstr. 1993, 118, 124488q.
59. Sofan, M.A.; Metwally, M. A.; Amer, F. A. J. Serb. Chem. Soc. 1993, 58, 731; Chem.
Abstr. 1995, 122, 31300.
60. Hammed, M. A.; Kamel, M. M.; Abbasi, M. M.; El-Wassimi, M. T.; Hassan, H. N. A.
Pharmazie 1986, 41, 141.
61. El-Wassimy, M. T. M. Sohag Pure Appl. Sci. Bull. 1991, 7, 1; Chem. Abstr. 1993, 118,
212962v.
62. Balicki, R.; Kaczmarek, L.; Nantka-Namirski, P. Acta Pol. Pharm. 1976, 33, 289; Chem.
Abstr. 1977, 87, 39357.
63. Hadi, A.; Martin, N.; Mendez, C.; Quinteiro, M.; Seoane, C.; Soto, J. L.; Albert, A.; Cano,
F. H. J. Chem. Soc., Perkin Trans. 1 1993, 15, 1743; Chem. Abstr. 1994, 120, 54480w.
64. Erian, A. W.; Aziz, S. I.; Negm, A. M.; Sherif, S. M. J. Chem. Res., Synop. 1993, 352;
Chem. Abstr. 1994, 180, 217523d.
65. Gohar, A. M. N.; Abdel-Latif, F. F.; El-Ktatny, M. S. Indian J. Chem., Sect. B 1986, 25B,
404.
66. AL-Njjar, A. A.; Amer, S. A. R.; Raid, M.; Elghamry, I.; Elnagdi, M. H. J. Chem. Res.,
Synop. 1996, 296.
ISSN 1424-6376
Page 153
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
67. El-Hamid, I. A. Afinidad 1996, 53, 410; Chem. Abstr. 1997, 126, 144228y. El-Hamid, I. A.
Pharmazie 1996, 51, 982; Chem. Abstr. 1997, 126, 47165t.
68. Martin, N.; Quinterio, M.; Seoane, C.; Soto, J. L.; Fonseca, I.; Florencio, F.; Sanz, J. J. Org.
Chem. 1990, 55, 2259.
69. Hussein, A. M.; Sherif, S. M.; Atalla, A. A. Polish J. Chem. 1996, 70, 872; Chem. Abstr.
1996, 125, 195525.
70. Metwally, N. H.; Abdelrazek, F. M. Synth. Commun. 2005, 35, 2481.
71. Abu-Elmaati, T. M.; El-Taweel, F. M.; El-Mougi, S. M.; Elagamey, A. G. A. J. Heterocycl.
Chem. 2004, 41, 655.
72. Eldin, S. M.; Eldin, A. A. M.; Basyouni, W. M. Arch. Pharm. Res. 1993, 16, 318; Chem.
Abstr. 1994, 121, 83091.
73. Hishmat, O. H.; El-Diwani, H. I.; Bakr, S. M. A.; Mahmoud, S. S.; Nada, S. A. Arch.
Pharm. Res. 1993, 16, 166; Chem. Abstr. 1994, 120, 315144.
74. Hishmat, O. H.; El-Diwani, H. I.; Melek, F. R.; El-Sahrawi, H. M. Indian J. Chem., Sect. B
1996, 35B, 30.
75. Soliman, A. M.; Sultan, A. A.; El-Shafei, A. K. Monatsh. Chem. 1995, 126, 615.
76. Raid, B. Y.; Hassan, S. M. Sulfur Lett. 1989, 10, 1; Chem. Abstr. 1990, 113, 6091.
77. Kamal-Eldeen, A. M.; El-Gaby, M. S. A.; Gaber, A. M.; Al-Kamali, A. S. N. Phosphorus,
Sulfur and Silicon and Relat. Elem. 2005, 180, 418
78. Amer, A. M.; El-Mobayed, M.; Ateya, A. M.; Muhdi, T. S. Monatsh. Chem. 2002, 133, 79.
79. Lipunova, G. N.; Nosova, E. V.; Charushin, V. N.; Chasovskikh, O. M. Chem. Heterocycl.
Compd. 2001, 37, 1278.
80. Abdelrazek, F. M. Synth. Commun. 2005, 35, 2251.
81. Elgemeie, G. E. H.; El-Ezbawy, S. R.; Ali, H. A. Synth. Commun. 2001, 31, 3459.
82. Ibrahim, N. S.; Hafez, E. A. A.; Mohareb, R. M. Heterocycles 1986, 24, 2085.
83. Gohar, A. K. M.; Abdel-Latif, F. F.; Regaila, H. A. A. Indian J. Chem., Sect. B 1986, 25B,
767.
84. Abdel-Rahman, R. M. Commun. Fac. Sci. Uni. Ank., B: Chimie 1986, 32, 87; Chem. Abstr.
1988, 109, 6480.
85. Kandeel, Z. E. J. Chem. Res., Synop. 1995, 291.
86. Rida, S. M.; Habib, N. S.; Badwey, E. A. M.; Fahmy, H. T. Y.; Ghozlan, H. A. Pharmazie
1996, 51, 927.
87. Benoit, R.; Grote, T.; Bayer, H.; Mueller, B.; Oberdorf, K.; Sauter, H.; Ammermann, E.;
Lorenz, G.; Strathmann, S. PCT Int. Appl. WO Patent 1996, 9635, 690; Chem. Abstr. 1997,
126, 59966t.
88. Metwally, N. H.; Abdelrazek, F. M.; J. Prakt. Chem.Chem-Ztg. 1998, 340, 676; Chem.
Abstr. 1999, 130, 13960r.
89. Abu-Elmaati, T. M.; El-Taweel, F. M.; Elmougi, S. M.; Elagamey, A. J. Heterocycl. Chem.
2004, 41, 655.
ISSN 1424-6376
Page 154
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
90. Abed, N. M.; Elagamey, A. G. A.; Harb, A. F. A. J. Chem. Soc. Pak. 1988, 10, 151; Chem.
Abstr. 1989, 110, 173140p.
Biographical Sketches
Dr. Samir Bondock
Samir Bondock was born in 1970 in Mansoura, Egypt and received his M.Sc. thesis on synthesis
of some new azo disperse dyes for dyeing synthetic fibers from the University of Mansoura in
1995 under the supervision of professor A. A. Fadda. He performed his Ph.D. thesis in the
research group of Professor A. G. Griesbeck in Cologne, Germany where he graduated in 2003
on spin-mapping effects and photoaldol reactions. Since 2003, he has been a lecturer at the
University of Mansoura. His research interest is the synthesis of heterocyclic compounds with
pharmaceutical interest using thermal and [2+2] photochemical reactions.
Abd El-Gaber El-Tarhoni
Abd El-Gaber El-Tarhoni was born in 1964 in Mansoura, Egypt and studied chemistry at the
University of Mansoura. In 1986, he obtained his B.Sc. He performed his M.Sc. thesis in the
research group of Professor A. A. Fadda on azo disperse dyes and their availability for dyeing
synthetic fibers.
ISSN 1424-6376
Page 155
©
ARKAT
General Papers
ARKIVOC 2006 (ix) 113-156
Prof. Ahmed Ali Fadda
Prof. A. A. Fadda was born in 1950 in Cairo, Egypt. He received both his B.Sc. degree (1971)
from Cairo University and his M.Sc. (1976) degree from Mansoura University. He performed his
Ph.D. thesis in the research group of Professor A. N. Kost at Moscow University, Russia where
he graduated in 1981 chemistry of pyridine rearrangement. Since 1991, he has been a professor
of organic chemistry at the University of Mansoura. Prof. Fadda is the author of over 130
scientific papers on heterocyclic chemistry, dyes chemistry and synthetic methodology. His
research interests cover the development and mechanistic understanding of organic reactions and
their applications in dyes and medicinal chemistry.
ISSN 1424-6376
Page 156
©
ARKAT
Coments go here:
- Log in to post comments