Determination of Absolute Rate Constants for Radical Polymerization and Copolymerization of Ethyl Alpha-Cyanoacrylate in the Presence of Effective Inhibitors against Anionic Polymerization
Determination of Absolute Rate Constants for Radical Polymerization and Copolymerization of Ethyl Alpha-Cyanoacrylate in the Presence of Effective Inhibitors against Anionic Polymerization
The absolute rate constants of propagation kp and of termination kt of ethyl α-cyanoacrylate (ECNA) were determined in bulk at 30°C by means of the rotating sector method under conditions to suppress anionic polymerization; kp = 1 622 1 · mol−1 · s−1 and kt = 4,11 · 108 1 · mol−1 · s−1 for the polymerization in the presence of acetic acid, and kp = 1610 1 · mol−1 · s−1 and kt = 4,04 · 108 l · mol−1 · s−1 for the polymerization in the presence of 1,3-propanesultone. The magnitude of k/kt determined was 6,39 · 10−3 l · mol−1 · s−1. The absolute rate constants for cross-propagation in ECNA copolymerizations were also evaluated. Quantitative comparison of the rate constants with those of common monomers and polymer radicals shows that the strong electron-withdrawing power of the ethoxycarbonyl and cyano groups enable the poly(ECNA) radical to add to monomers as fast as the other polymer radicals. The relatively high reactivity of ECNA, regardless of the type of attacking polymer radical, is interpreted by a transition state greatly stabilized by both the ethoxycarbonyl and the cyano groups.
- Log in to post comments