tissue engineering

Many advanced medical and biological devices require microscale patterning of cells, proteins, and other biological materials. This article describes the use of piezoelectric ink jet processing in the fabrication of biosensors, cell-based assays, and other microscale medical devices. A microelectromechanical system-based piezoelectric transducer was used to develop uniform fluid flow through nozzles and to prepare well-defined microscale patterns of proteins, monofunctional acrylate ester, sinapinic acid, deoxyribonucleic acid (DNA), and DNA scaffolds on relevant substrates.

This paper reviews biodegradable synthetic polymers fo- cusing on their potential in tissue engineering applications. The major classes of polymers are briefly discussed with regard to synthesis, properties and biodegradability, and known degradation modes and products are indicated based on studies reported in the literature. A vast major- ity of biodegradable polymers studied belongs to the poly- ester family, which includes polyglycolides and polylactides.