Thesis

Polymers are a widespread class of materials that provide an often advantageous combination of properties. Easy processability and high versatility combined with low costs make polymers the materials for an increasing number of high-tech and commodity applications. Semi-crystalline polyolefins are an important class of polymers, produced in more than 150 million metric tons per year. They are used to make a wide range of products ranging from fibers with superior mechanical properties to flexible packaging and molded parts.

 

 

This research defined and evaluated mechanical properties of prototypes created using a plaster based three-dimensional printing (3DP) system commercialized by Z Corporation. 3DP is one of the fastest growing forms of rapid prototyping. Till date, there is little or no information available on material properties of infiltrants used in 3DP. This research work evaluated and documented some of the useful information for 3DP users by determining the effect of build position, build orientation and infiltration materials on the strength of prototypes.

Despite the latest polymer materials and surgical suturing techniques, the knot will always be the weakest point of the tied suture loop. In theory, the knot must be as small as possible to prevent an excessive amount of tissue reaction and a delay in healing. There have been reports suggesting that topical cyanoacrylate adhesives could have a reinforcing effect on a surgeon’s knot. Such an outcome could lead to the elimination of knot slippage and the unsatisfactory performance of some surgical knots.