inkjet

The present work demonstrates feasibility of an inkjettable, isotropically electrically conductive adhesive in the form of a silver loaded resin with a 2-step curing mechanism. In the first step, the adhesive is dispensed (jetted) and precured leaving a “dry” surface. The second step consists of assembly and final curing. The 2-step cure system is based on a Acrylate-Epoxy-Resin matrix with very low viscosity, i.e., 3 mPas of newtonian properties. Spheroidal silver particles of high purity and a compatible organic coating have been loaded at 70% by weight.

Many advanced medical and biological devices require microscale patterning of cells, proteins, and other biological materials. This article describes the use of piezoelectric ink jet processing in the fabrication of biosensors, cell-based assays, and other microscale medical devices. A microelectromechanical system-based piezoelectric transducer was used to develop uniform fluid flow through nozzles and to prepare well-defined microscale patterns of proteins, monofunctional acrylate ester, sinapinic acid, deoxyribonucleic acid (DNA), and DNA scaffolds on relevant substrates.